Is Large-scale Pre-training always Necessary for Vision Transformers?

Alaaeldin E1-Nouby*!:2

Hervé Jégou!

Meta AL Tnria

Abstract

Generic large-scale image datasets are powerful means
for training visual models. Such datasets, however, often
come with limitations. For example, ImageNet has restric-
tions for commercial usage while automatically crawled
large-scale image data may contain unknown biases affect-
ing final models. In this work, we investigate the possibil-
ity of achieving a competitive self-supervised pre-training
using limited training data available for the target task.
We consider datasets such as Stanford Cars, Foodl0l and
COCO, which are order(s) of magnitude smaller than Ima-
geNet. We show that denoising autoencoders, such as BEIT
or its variant that we introduce in this paper, are more ro-
bust to the type and size of the pre-training data compared
to popular self-supervised contrastive learning approaches.
We obtain competitive performance compared to ImageNet
pre-training for a variety of visual tasks and domains. In
particular, for object detection and instance segmentation
tasks in COCO, our method outperforms ImageNet pre-
trained models, while solely using COCO images for train-

ing.

1. Introduction

Modern computer vision neural networks are heavily
parametrized: they routinely have tens or hundreds of mil-
lions of parameters [ 1, 2, 3, 4]. This has been the key to their
success for leveraging large-scale image collections such
as ImageNet. However these high capacity models tend to
overfit on small, or even medium sized datasets consisting
of hundreds of thousands of images.

The dominant learning paradigm [5, 6] for data-starving
problems nowadays is typically: (1) pre-train a model on a
large dataset like Imagenet [7], and in turn (2) finetune the
weights of the models on the target task for which we have
a limited amount of data. The second training stage typi-
cally adopts a shorter optimization procedure than the one
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employed when training from scratch (i.e., from randomly
generated weights).

This simple approach has led to impressive results,
which are state-of-the-art in many tasks such as detec-
tion [8, 9], segmentation [10] and action recognition [11].
Despite this success, we point out that there are some lim-
itations to the reliance on pre-training with curated large-
scale datasets. First, most datasets are restricted in terms
of their usability in commercial systems as is the case for
ImageNet [7]'. Second, controlling the bias and privacy
concerns when dealing with large-scale and web-crawled
datasets is challenging. Therefore, it can be advantageous if
a method can retain the strong performance of pre-training
with large-scale datasets while providing an improved con-
trol over copyrights, biases and privacy risks by leveraging
smaller sized datasets.

In supervised pre-training, the network learns to focus
on the mapping between images and the labels of the pre-
training stage, but can discard information that is relevant
to other downstream tasks. In other terms, pre-training on
large-scale classification datasets does not necessarily align
with the goal of learning general-purpose features, as it
uses only a subset of the available information controlled
by the given dataset categorization bias [12]. These limi-
tations have motivated the development of self-supervised
pre-training methods that learn from data without relying
on annotations. Most notably, the contrastive and joint em-
bedding approaches [13, 14, 15, 16, 17] can serve as effec-
tive pre-training strategies. While obtaining a strong perfor-
mance on numerous tasks, such methods have a strong bias
towards ImageNet data since the transformations have been
hand-designed to perform well on the ImageNet bench-
mark. Some of the most effective transformations, like
cropping, rely on the images being object centric [I8].
When applied on uncurated data, these methods degrade
significantly and require larger datasets to preserve perfor-
mance [19].

ITerms of access explicitly mention “Researcher shall use the Database only for
non-commercial research and educational purposes.” https://image-net.
org/download.php
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Figure 1. SplitMask process two disjoint subsets of an image in-
dependently followed by a a shallow decoder which solves a MIM
task for the missing patches in addition to a contrastive signal be-
tween two different reconstructions of the same image.

This is in contrast with natural language processing,
where nowadays, most applications use large models which
were pre-trained on uncurated data. In particular, the
(masked) language modeling loss has been applied to trans-
former networks, leading to the BERT model [20], which
is now the foundation of most NLP models. Inspired by
this success, Bao et al. [21] have shown the potential of the
Masked Image Modeling (MIM) task to pre-train a vision
transformer (ViT). Such a model can be thought of as a de-
noising autoencoder [22] where the noise corresponds to the
patch masking operation. This technique has been success-
fully applied to ImageNet, but research questions remain:

(1) How much does this pre-training method rely on the
number of pre-training samples. Does it require millions of
images to be useful?

(2) Is this approach robust to different distributions of
training images? In particular, is it an effective paradigm
to learn with non object-centric or uncurated images?

If the answer to both questions is positive, it will enable
pre-training using a larger variety of datasets, including the
training sets of many tasks that are smaller or belong to a
different domain than ImageNet.

2. Related Work

Pre-training with autoencoders has a long history in
deep learning, where it was initially used as a greedy layer-
wise method to improve optimization [22, 23, 24, 25, 26].
In the context of unsupervised feature learning for image
classification, different tasks related to denoising autoen-
coders have been considered, such as in-painting [27], col-
orization [28] or de-shuffling of image patches [29]. In

Table 1. Analysis of different self-supervision methods transfer
performance to the iNaturalist-2019 dataset when varying the size
of the ImageNet subset used in the pre-training stage, in addition
to using non object-centric datasets.

IMNet 1%  IMNet 10%  IMNet Full COCO
Method epochs: 30k  epochs: 3k epochs: 300 | epochs: 3k
Supervised | 71.6 75.0 758 | ,
DINO [15] 70.1 73.1 78.4 71.9
BEIT [21] 74.1 74.5 75.2 74.4
SplitMask 74.8 75.4 75.4 76.3

Table 2. Ablation study on the effect of different tokenization
methods.

DALL-E Rand. Proj. Rand. Patches K-Means

iNat19 752 75.2 75.3 75.0

natural language processing, denoising autoencoders have
been applied by masking or randomly replacing some to-
kens of the input, and reconstructing the original sequence,
leading to the BERT model [20]. Similar methods have
been proposed to pre-train sequence-to-sequence models,
by considering additional kind of noises such as word shuf-
fling or deleting [30, 31].

There has been efforts to adopt such successful ideas in
NLP to computer vision, but with limited success. Chen
et al. [32] proposed iGPT, a transformer-based autoregres-
sive model that operates over image pixels, while Atito et al.
[33] trained a ViT model on denoising of images where the
noise is applied at pixel level. More recently, Bao et al. [21]
introduced the Masked Image Modeling loss in computer
vision, where image patches are masked, and the goal is to
predict the discretized label of the missing patches corre-
sponding to their visual words as defined by a pre-trained
discrete VAE [34].

Pre-training data is an important ingredient of self-
supervised learning, and multiple works have studied its
impact on the transfer performance of models. While it
is possible to learn high quality features from non-curated
(eg. YFCC or IG) data using instance discrimination, this
usually requires order of magnitude more data than Ima-
geNet [19, 35]. Similarly, one can perform supervised pre-
training using weakly supervised data, such as using hash-
tags as labels, but this strategy also requires large amount
of data to work well [2, 36, 37]. On the other hand,
it was shown that for many natural language processing
tasks, increasing the size of the pre-training dataset did not
lead to strong improvement when using denoising autoen-
coders [30]. Finally, some work studied how much could
be learned from a single pre-training image [38] or from
synthetic data [39, 40].



Table 3. COCO detection and instance segmentation performance, using a Mask

R-CNN pipeline.

Table 4. Finetuning performance on ImageNet.
Here, epochs refer to the number of pre-training

epochs on ImageNet.

Method Pre-training AP® AP, APY, | AP™ APZ, APZL

Supervised | IMNet COCO Method | Backbone  Epochs | Top-1
Random Init. 383 60.1 414 | 356 S57.1 377 MocoV3 [12] 300 314
Random Init.t 428 645 456 | 39.1 61.5 41.7 ’
DeiT [41] v v 442 666 479 | 40.1 632 427 DINO [15] VIiT-S 300 8LS
BEIT [21] v 45 662 488 | 403 632 431  BEIT[] 300 | 813
DINO [15] V| 437 655 477 | 39.6 623 423 SplitMask 300 81.5
BEiT V| 447 663 488 | 402 63.1 432
SplitMask v | 453 669 494 | 40.6 63.6 435
3. Analysis 3.3. Tokenizers
3.1. Sample Efficiency The BEiT method, as proposed by Bao et al. [21], re-

Denoising autoencoders vs Supervised/DINO First, we
start by studying the impact of the pre-training dataset size,
by varying the number of ImageNet examples we use to
train models. We consider subsets of ImageNet containing
10% and 1% of the total number of examples, and use the
balanced (in terms of classes) subsets from [43]. To de-
couple the effect of using smaller datasets and the effect of
doing less training updates, we adapt the number of epochs
to keep the number of iterations constant. This means that
we perform 3k and 30k epochs on ImageNet 10% and 1%
respectively. We report results in Table 1. Observe how
pre-training with an autoencoder loss such as masked im-
age modeling is robust to the reduction in dataset size. In
contrast, like for supervised pre-training, the performance
of models pre-trained with DINO self-supervision degrades
when training with smaller datasets.

3.2. Learning using non object-centric images

We now study the impact of changing the nature of the
pre-training data. In particular we use images that are not
object-centric, like in Imagenet. To this end, instead of pre-
training using ImagetNet, we pre-train with images from
the COCO dataset only. As COCO contains roughly 118k
images, this dataset is approximately equivalent in terms of
size to the ImageNet 10% subset. Again, to disentangle the
effect of training with a different number of iterations, we
adapt the number of epochs: we use 3k epochs on COCO.

We report the results of this experiments in Table 1.
When pre-trained on COCO, DINO drops significantly
compared to full ImageNet pre-training (-8.3). Interest-
ingly, the drop is higher than using 10% ImageNet even
though the numbers of samples is roughly the same. We
hypothesis this is because COCO images are not biased to
be object-centric, while this joint embedding method was
designed and developed using ImageNet as benchmark. In
contrast, BEiT’s performance only decreases slightly while
SplitMask attains +0.7 improvement over full ImageNet
pre-training. This is an interesting property which makes
such models prime candidates for learning effectively from
uncurated images in the wild.

lies on the discrete VAE tokenizer from DALL-E, which has
been pretrained on a large weakly supervised dataset. Since
we want to study whether it is possible to pre-train models
solely on small datasets, or non object-centric ones, we re-
place the DALL-E tokenizer by a simple alternative. To this
end, we consider different simple alternatives to discretize
images at the patch level without any pre-training as shown
in Table 2. Each of these techniques is applied on each
patch independently, making them relatively lightweight
and more efficient than the original tokenizer considered in
BEiT. We observe that replacing the DALL-E tokenizer by
simpler choices does not lead to any significant degradation
in accuracy. We use random projection as our default tok-
enization method.

4. Methodology

We introduce SplitMask, a variant of denoising autoen-
coders based on vision transformers. An overview of our
method is illustrated in Figure 1.

Our approach is based on three steps, which we refer to
as split, inpaint and match. As in standard vision transform-
ers, an image is first broken down into patches of 16x 16
pixels. Then, we split the patches into two disjoint subsets
A and B, which are processed independently by our deep
ViT encoder. Next, using the patch representations of the
subset A and a shallow decoder (e.g. 2 layers), we inpaint®
the patches of the subset B , by solving a MIM task, and
vice versa. Finally, we obtain a global image descriptor by
average pooling of the patch representations from the de-
coder output corresponding to each branch.

The feature aggregation is over both observed and hal-
lucinated patches. We try to match the global descriptors
of the image obtained from subset A to that obtained from
subset B. In other words, we use the masking operation of
the mask image modeling loss as a data augmentation for a
contrastive learning loss similar to NPID or SimCLR. Note,
SplitMask does not add any significant computational cost
over MIM methods like BEIT to produce this global con-

2Inpainting in this context is implemented by solving a Masked Image
Modeling task rather than the typical inpainting by reconstruction of pixels.



Table 5. Comparison between finetuning performance on the target datasets when different pre-training datasets are used.

Method Backbone | Supervised Data Used iNat-18 iNat-19 Food 101 | Cars Clipart Painting Sketch
pre-training | IMNet Target 437k 265k 75k 8k 34k 52k 49k
. F | CVTI3 v - - - - 60.6 55.2 57.6
Livetal 417 ResNet-50 v ] ] _ _ 69 535 596
Random Init. v 59.6 67.5 84.7 353 410 384 372
DeiT [41] 4 4 4 69.9 75.8 91.5 922  79.6 74.2 72.5
BEIT [21] ViT-S 4 v 68.1 75.2 90.5 924 753 68.7 68.5
BEiT v 68.8 76.1 90.7 92.7 - 69.0 -
SplitMask 4 70.1 76.3 91.5 928 783 69.2 70.7

trastive training signal.

5. Experiments

5.1. Object detection and Instance Segmentation

First, we evaluate our approach on the COCO object de-
tection and instance segmentation dataset using the Mask
R-CNN pipeline [8] and report our results in Table 3. We
compare models pre-trained on the COCO dataset alone
with their equivalent counterparts that were pre-trained on
ImageNet, either in a supervised or self-supervised fash-
ion. First, we observe that BEiT models which were pre-
trained on the COCO dataset alone obtain better down-
stream task performance than the same models pre-trained
on ImageNet. For example, when using a ViT-base back-
bone, pre-training on COCO instead of ImageNet leads to a
boost of +0.4 in box AP.

Finally, we observe that SplitMask leads to a consistent
improvement compared to the BEiT baseline, such as +0.6
box AP when using a ViT-small and +0.3 mask AP for ViT-
base backbones. All put together, in a comparable setting,
we obtain a +1.1 box AP increase while not using Ima-
geNet.

5.2. Image Classification

We perform empirical evaluation on a number classifica-
tion datasets and report our results in Table 5.

BEIT pre-training: ImageNet vs Target First, we com-
pare ImageNet pre-training to the target data pre-training
with BEIiT and observe that for many cases, pre-training
on the target data alone leads to better results. This is true
for the ViT-small backbone across all the datasets includ-
ing Stanford cars (+1.1% acc), which consists of only 8k
images. When using a ViT-base backbone, pre-training on
the target task data outperforms BEiT self-supervised Im-
ageNet pre-training for datasets as small as Food101 (+0.7
acc), which is more than 10x smaller than ImageNet. Sec-
ond, we observe that SplitMask leads to further improve-
ment in performances for multiple datasets: for example, on
the iNaturalist 2018 dataset, we see +3.0 in accuracy with a
ViT-base model.

Supervised ImageNet pre-training As it was already ob-
served in previous work [15, 16, 42], we also see in many
cases that self-supervised training outperforms supervised
pre-training on ImageNet. For example, on the iNatural-
ist datasets, training with the target task data alone (includ-
ing a pre-training step) gives better results than pre-training
on ImageNet with labels: with a ViT-base model and the
SplitMask method, we see an improvement of +2.7% in
top-1 accuracy. As for the clipart, painting and sketch
datasets, we see that SplitMask provides a competitive per-
formance, outperforming an ImageNet pre-trained BEiT
across all datasets for ViT-S. However, for the aforemen-
tioned datasets, supervised pre-training achieves the best
performance for both ViT-S and ViT-B.

5.3. Pre-training using ImageNet

In Table 4 we show the performance of our SplitMask
method using the ViT-S and ViT-B backbones and 300
epochs pre-training compared to other recent transformer-
based self-supervised learning methods. It can be observed
that SplitMask provides a strong performance, outperform-
ing both BEiT and MocoV3 for all backbones. Addition-
ally, SplitMask achieves a performance on par with DINO
while being significantly cheaper and simpler to train. Note
that while SplitMask and BEiT attain a strong finetun-
ing performance, denoising autoencoding methods typically
fall behind in terms of linear probing compared to instance
discrimination methods like DINO.

6. Conclusion

In this paper, we have raised the question of how to
pre-train models with self-supervised learning, wondering
in particular on whether large scales datasets such as Ima-
genet are necessary for pre-training. Our study on ImageNet
shows that taking a smaller pre-training dataset does not
lead to big performance drop for denoising autoencoders,
as opposed to instance discrimination self-supervised tech-
niques or supervised pre-training. Similarly, training on non
object-centric images does not impact the downstream task
performance significantly.
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