Are Large-scale Datasets Necessary for Self-Supervised Pre-training?

Appendix

A. Implementation Details

Tokenizers. Similarly to the tokenizer used in [21], all
tokenizers presented in Table 2 have a vocabulary of size
8192. For the random tokenizer, we sample 8192 vectors
with uniform component-wise distribution. For the random
patches tokenizer we sample 8192 patches from different
images. For the K-means tokenizer, the 8192 elements of
the vocabulary are obtained by applying the K-means algo-
rithm to 3 millions patches sampled from the dataset.

Pre-training. We use the original ViT formulation as pro-
posed by Dosovitskiy et al. [2] and we follow the pre-
training hyperparameters of Bao et al. [21]. All baselines
reported use the same backbone implementation and trained
in similar settings. For SplitMask, by default, we use ran-
dom block masking [21] of 50% masking ratio to obtain a
mask and its complement to extract the two subsets. The
maximum and minimum number of patches per block is 75
and 16 respectively. We use the standard random cropping
and horizontal flipping as data augmentations. We use 2
transformer layers for the decoder with embedding dimen-
sion matching that of the encoder.

However, for the smallest datasets (i.e. Stanford-Cars,
ClipArt, Sketch and Paintings), we found that stronger data
augmentation and more aggressive masking prevents early
overfitting. In particular, we use a uniform masking of 75%
(like in the work by He et al. [45]), as well as using random
greyscale, solarization, Gaussian blur and color jittering as
additional forms of data augmentation.

The BEIT baselines pre-trained on ImageNet and re-
ported in Table 3 and 5 use the DALL-E tokenizer. Other
BEIT and SplitMask models have been pre-trained using
our random projection tokenizer. For the InfoNCE loss we
use 7 = 0.2 following Chen et al. [42].

Object detection and Instance segmentation. We use
the Mask R-CNN detection method [8] with ViT backbone
as our detection method. In order to obtain features compat-
ible with the Feature Pyramid Network (FPN) design [46],
we use max pooling and transposed convolution operations
similar to El-Nouby et al. [47]. To accommodate for the
variable resolution we replace the absolute positional en-
coding for our models and the baselines with sinusoidal po-
sitional encoding [48]. All models are trained using the 3x
schedule (36 epochs) unless mentioned otherwise. We use
the training hyper-parameters used by Liu et al. [3].

Image classification finetuning. Hyperparameters used
for finetuning each of the specific image classification
datasets reported in Table 5 is provided in Appendix E.

B. SplitMask vs BEiT

We ablate our proposed components in SplitMask com-
pared to a BEiT baseline in Table 6. All models use a ViT-B
backbone and pre-trained for 300 epochs. First, we observe
that the ImageNet finetuning performance improves with a
margin (+0.5) by simply adopting the encoder-decoder ar-
chitecture and processing two disjoint subsets per iteration.
Second, the global contrastive loss on its own, without the
MIM objective, provides a very weak performance. This
is expected since there is no training signal for the local
patch representations, and a global matching objective with
50% masking of patches may be too hard, providing a noisy
training signal and hindering the model’s ability to learn in-
formative features.

Our full SplitMask model that uses both the MIM and
contrastive objectives obtains the best performance and out-
performs BEiT by a large margin of +0.8. The Linear prob-
ing performance of SplitMask is stronger than BEiT. How-
ever, both models provide a relatively weak performance on
this benchmark compared to instance discrimination meth-
ods, whose final layers are more aligned to the classification
task. Note, SplitMask adds a negligible computing over-
head compared to the BEIT baseline: its wall-clock training
time is marginally higher as detailed in Table 6. All models
are trained using 16 GPUs and batch size of 2048.

Table 6. Ablations of different components in our SplitMask
model in comparison with a BEiT baseline. All models includ-
ing the baseline have been trained for 300 epochs using a ViT-B
backbone.

Method ‘ Split Inpaint Match ‘ Finetune Lin. ‘ Hours

BEIT [21] | v | 828 410 325
v v 833 464 | 31.0
SplitMask | v v 793 40 | 325
v v v 83.6 465 | 340

C. Encoder-Decoder vs BEiT

An advantage of the encoder-decoder design we propose
in ?? is that it encourages decoupling of general-purpose
encoding of image features, which is required for the down-
stream tasks, and features specific to solving the pretext task
of MIM. In particular, compared to BEiT the encoder is not

N W Wb
v o wu o

Linear Probe Acc.

N
o

—— Encoder-Decoder
BEIT

fay
(%]

2 4 6 8 10 12
Layer
Figure 2. Linear probing accuracy on ImageNet for SplitMask and
BEIT using features extracted from different layers.

capable of solving the pretext task on its own since it does
not have access to the mask token. Therefore, it can only
help solve the task by providing informative representation
to the decoder which is the component responsible of solv-
ing the pretext task. We can see in Figure 2 that this property
improves the transferability of later layers representation to
downstream tasks compared to BEiT which has a stronger
drop in linear probing performance in later layers.

D. Overfitting during pre-training

We observed that for pre-training of very small datasets
(e.g. Stanford-Cars), longer pre-training schedules can be
counterproductive. For example, if we follow the assump-
tion we need to pre-training for the same number of updates
of ImageNet pre-training for 300 epochs, the Stanford-Cars
equivilant schedule would be 45k epochs. However, as we
see in Figure 3, pre-training longer than 5k epochs leads to
a severe drop in finetuning performance.

—— Stanford Cars Pre-training

90
<3
(o]
[l
w
< 89
Q
=
O
S88
I

87

3000 5000 10000 15000

Epochs

Figure 3. Finetuning performance for the Stanford Cars datasets
as a function of number of pre-training epochs using the same
datasets images.

E. Image Classification Finetuning

We detail the hyperparameters used to finetune each of
the classification datasets in Table 7.

Table 7. Hyperparameters used for finetuning on the different classification datasets

Dataset | iNatl8 iNatl9 Food 101 | Cars Clipart ~ Painting Sketch
Train Res 224 224 224 224 224 224 224
Test Res 224 224 224 224 224 224 224
Epochs | 300 300 300 | 300 300 300 300
Batch size 1024 1024 1024 1024 1024 1024 1024
Optimizer AdamW AdamW AdamW | AdamW AdamW AdamW AdamW
Learning rate (LR) 1.4e-4 1.4e-4 1.4e-4 4e-3 4e-3 4e-3 4e-3
LR schedule cosine cosine cosine cosine cosine cosine cosine
LR layer decay small models 0.65 0.65 0.65 0.65
LR layer decay base models 0.65 0.65 0.65 0.65
Weight decay 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Warmup epochs 5 5 5 60 60 60 60
Label smoothing 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Dropout

Stoch. Depth 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Repeated Aug v v v

Gradient Clip.

H. flip v v v v v v v
Random Resize Crop v v v v v v v
Rand Augment (magnitude/std) 7/0.5 7/0.5 7/0.5 9/0.5 9/0.5 9/0.5 9/0.5 9/0.5
Auto Augment v v v v v v v
Mixup alpha 0.8 0.8 0.8 0.8 0.8 0.8 0.8
Cutmix alpha 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ColorlJitter 0.4 04 0.4 04 0.4 04 0.4
Test crop ratio | 0875 0.875 0.875 | 0.875 0.875 0.875 0.875

	. Introduction
	. Related Work
	. Analysis
	. Sample Efficiency
	. Learning using non object-centric images
	. Tokenizers

	. Methodology
	. Experiments
	. Object detection and Instance Segmentation
	. Image Classification
	. Pre-training using ImageNet

	. Conclusion
	. Implementation Details
	. SplitMask vs BEiT
	. Encoder-Decoder vs BEiT
	. Overfitting during pre-training
	. Image Classification Finetuning

